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We obtain experimental data on time intervals of a bubble train generated from a nozzle with the air flow
rate as the control parameter. Varying the length of the hose that connects the proportionating solenoid valve to
the nozzle, we generate bifurcation diagrams showing period-adding cascades, among other dynamical phe-
nomena. Then we construct a two-parameter family of one-dimensional maps whose bifurcation diagrams
qualitatively match the experimental ones. The model indicates the existence of parameters where two attrac-
tors coexist, a phenomenon called bistability, and the same behavior is fully confirmed in the experiment.
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I. INTRODUCTION

Bubble formation in a nozzle is a common phenomenon
that can be observed in everyday situations, from aquarium
to champagne glasses[1]. The shape of bubbles and the in-
teraction between them are the center of interest for many
interfacial studies and technological processes from petro-
chemical to food industries[2] and space crafts[3]. Never-
theless, bubble formation has only really begun to be prop-
erly explored in the last few decades due to the development
of experimental and computational techniques, which gave
access to completely new phenomena. Besides these devel-
opments, the introduction of nonlinear dynamics has thrown
some light on the understanding of transitions between dif-
ferent bubbling regimes, enabling the recognition of periodic
and chaotic behavior. Considering a bubble as an object re-
sulting from the interplay between a pneumatic and a liquid
system, the bubble formation depends on the many elements
such as geometrical and physical-chemical parameters. In
this direction some attempts have been made to introduce
models which could mimic some of the properties of bubble
formation and provide a path to their understanding[4,5].

Our emphasis in this paper resides on time scale quanti-
ties of a bubble train generated in a nozzle at different air
flow rates. More precisely, we look at the time series of time
intervalsTn between successive bubbles and investigate the
correlation between two successive time intervals. Experi-
mental results[5–8] have shown that the sequencehTnj is not
necessarily constant. Stable periodic regimes of period
greater than one or even chaotic regimes may appear. In fact,
it is demonstrated that this sequence is approximately given
by the iterates of a one-dimensional map, that is,Tn+1
= fsTnd. In this work we propose a more accurate model that
generates this map. Both in the experiment and in the model
the dynamics is investigated through a bifurcation diagram
which is the plotting of the attracting sets against a control

parameter, which in the experimental case is the air flow rate.
Some interesting features such asperiod-adding cascades
appear in these diagrams[5], a phenomenon already reported
in different contexts, such as firing neurons[9,10], electric
circuits [11], and pulsing lasers[12].

Another important aspect isbistability, which is the coex-
istence of two stable periodic regimes for the same control
parameter. Bistability arises naturally in theoretical models
showing period-adding cascades and is fully confirmed in
our experiments. This phenomenon implies a shift in the bi-
furcation parameters, according to how the experiment is
conducted, that seems at first sight to be an experimental
error [13], but in fact is intrinsic to the dynamics and can be
explained by theory.

This paper is organized as follows. In Sec. II we describe
the experimental apparatus. In Sec. III we present a compari-
son between the experimental bifurcation diagrams and those
obtained numerically from the model, explaining then both
the physical and phenomenological motivations of its con-
struction. In Sec. IV we study the essential mechanisms of
period-adding bifurcations and in Sec. V we obtain confir-
mation, from the experimental point of view, of the predicted
phenomenon of bistability.

II. EXPERIMENTAL APPARATUS

The bubble column consists of a cylindrical tube with an
inner diameter of 11 cm and 70 cm in height. The bubbles
are issued by injecting air through a metallic nozzle sub-
merged in a viscous fluid(20% water/80% glycerol) and the
liquid is maintained at a level of 15 cm, as shown in Fig. 1.
The nozzle with inner diameter of 0.78 mm and length of 2.5
cm is placed with its tip 6.5 cm below the liquid surface to
avoid wall effects on the forming bubble. The nozzle is at-
tached to a chamber with a capacity of 30 ml. Air from a
compressor is injected to a capacitive reservoir and a propor-
tionating solenoid valve(Aalborg PSV-5) controlled by a
PID controller (BTC-220) sets the air flow to the chamber
under the nozzle. The flow rate is measured by a flow-meter
(Aalborg GFM47). The pressure drop across the solenoid
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valve is around 50 kPa for the working range of air flow rate.
In order to study the influence of the pneumatic system in

the bubble formation dynamics, a hose is connected from the
solenoid valve to the chamber under the nozzle, keeping
fixed the influence of the other elements of the pneumatic
system. The hose inner diameter is 4.1 mm and we used four
different hose lengths: 10.0 cm, 50.0 cm, 135.0 cm, and
307.0 cm. The hose lengths change intrinsic properties of the
pneumatic system, such as the inertance, which represents
the phase difference between pressure and mass flow. The
hose volumes are 1.3, 6.6, 17.8, and 40.5 ml, which gives an
idea of the relative volumes of the bottom chamber and the
air line.

Using a ramp function of the controller, the air flow rate
ranged from 65 to 125 ml/min. We also perturbed the bubble
formation dynamics applying sound bursts with a loud
speaker placed near the top of the bubble column.

The detection system is based on a laser-photodiode with
a horizontal He-Ne laser beam focused in photodiode placed
2 mm above the nozzle. The time interval between succes-
sive bubbles is measured by the time circuitry inserted in a
PC slot with a time resolution equal to 1µs. The input sig-
nals are voltage pulses induced in a resistor and defined by
the beginning(ending) of scattering of a laser beam. The
pulse width is the time intervaltn (n is the bubble number)
and the time delay between two pulses defines the crossing
time sdtnd of a bubble through the laser beam, so that the
total time interval isTn= tn+dtn. We estimate the total experi-
mental noise around 100µs in the period 1 behavior; see[6]
for more details.

III. BIFURCATION DIAGRAMS

The experimental results are summarized in the four bi-
furcation diagrams shown in Figs. 2(a)–2(d), corresponding
to the four hoses in increasing order of length.

The time interval between bubbles(vertical axis) was re-
corded while slowly increasing the air injection rate(hori-
zontal axis) into liquid. For the shortest hose(10.0 cm)—Fig.
2(a)—the bubbling dynamics is a period 1 regime for this
range of flow rate. In Fig. 2(b) the effect of hose lengthening
(50.0 cm) is shown by a closed looplike sequence called
bifurcation bubblearound 115 ml/min. The stable period 1
regime gives rise to a stable period 2 regime(a period-
doubling bifurcation) and then reverses to a period 1 regime
again (a reverse period-doubling bifurcation or period-
halving bifurcation). Figure 2(c) shows the bifurcation se-
quence for the hose length of 135.0 cm presenting a more
complex scenario, including period 3 and chaos. Finally, in
Fig. 2(d), using the longest hose, we see the period-adding
cascade, where successive stable periodic regimes of increas-
ing period appear as the air flow rate increases. The cascade
is sudden interrupted by the appearance of a period 1 stable
regime.

These experimental bifurcation diagrams were emulated
by the following model:

f l,fsTd = − f + hgreatest root oft ° T + mft − dsTdg3

− lft − dsTdgj, s1d

where dsTd=−Af1−tanhsT+Bdg and m=0.4, A=2.4, andB
=1.4 are fixed parameters. In this model,T is the time inter-
val between bubbles, the control parameterf plays the role
of the air flow rate in the diagrams and the parameterl plays
the role of the hose length. Figures 2(A)–2(D) show the nu-
merical experiments with four different values ofl, say −1.0,
−0.55, 0.0, and +1.2, respectively. We have chosen the val-
ues ofl generating the best possible qualitative emulations of
the real bifurcation sequences. The inspiration to our model
comes from three sources.

(1) Glimpses of the shape off coming from the diagram
Tn+1 vs Tn for parameters with chaotic dynamics. In this case
there are many different pairssTn,Tn+1d=fTn, fsTndg giving a
rough idea of at least a region of the graph.

(2) Glimpses of the shape off by the properties of its
dynamics: the bubble bifurcation for the small hose and the
period-adding cascade for long hoses.

(3) Examination of “greatest root models” that may gen-
erate discontinuities.

Two examples of(1) are shown in Fig. 3, for hose lengths
equal to 130.0 cm and 140.0 cm and air flow rate around
105 ml/min. In Fig. 3(a) the plot suggests a continuous func-
tion with an inflection point in the decreasing branch and in
Fig. 3(b) a discontinuity point near the same region. For
nonchaotic dynamics our assumption is that the main fea-
tures of the graph are preserved and its shape is continuously
deformed as the parameters change.

Another less canonical method is to obtain transient iter-
ates outside equilibrium by perturbing and relaxing the sys-
tem (with a sound burst, for example). The problem with this
method is that the perturbation changes the system itself, that
is, exactly the functionf we want to determine. In fact, one
has to observe the transient regime immediately after remov-
ing the sound, but it is never sure that the system has re-
turned to its unperturbed condition before these iterates. It is

FIG. 1. Experimental apparatus for bubble formation with the
flowmeter(Fl), the controller(C) and the solenoid valve, represent-
ing the control loop of the air flow rate, and the hose(h) between
the valve and the chamber under the nozzle.
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pratically impossible to push the bubbles to a transient re-
gime without affecting the system we want to observe.

However combining the positive aspects coming from(2)
and (3) we were able to fulfill these lacks of information.

Concerning(2), if the dynamics is periodic little can be
said about the shape off, but the variation of a parameter
induces a movement in the graph that has consequences on

the bifurcation diagram. For example, for long hoses the
period-adding cascade suggests a mechanism of increasing
period and a discontinuity off (as we will see later in Sec.
IV ). For short hoses, the bubble bifurcation suggests a de-
creasing branch off with an inflection point. For if(a) the
derivative is greater than one in absolute value at the inflec-
tion point, (b) the derivative is smaller than one a bit farther

FIG. 2. (a)–(d) Bifurcation diagrams produced by the experiment with hose lengths 10.0 cm, 50.0 cm, 135.0 cm, and 307.0 cm,
respectively.(A)–(D) Bifurcation diagrams produced by a computer experiment with model(1), with parameterl equal to −1.0, −0.55, 0.0,
and +1.2, respectively.
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from the inflection point and(c) the graph moves with re-
spect to the diagonal with the variation of the control param-
eter, then the fixed point given by the intersection between
the graph and the diagonal may lose and recover its stability
by period-doubling and period-halving bifurcations.

All these considerations show that the hose length affects
the shape off more or less as depicted in Fig. 4. As long as
the hose length increases the smooth inflection becomes
stronger, giving rise to a discontinuity.

A discontinuity like this can be generated by a greatest
root model. For eachT we associate a functionFTstd and
determine fsTd as its greatest root. A discontinuity in the
function f may appear ifFT is not monotone. IfFT changes
more or less as in Fig. 5, for example, for increasingT, then
there is a jump in the value offsTd exactly for the parameter
T such that the critical value touches the abscissa.

The functionFTstd was chosen to be always a cubic in the
variablet. The starting point was the functionmt3− lt, where
l plays the role of the hose length. Note that for negative
values ofl this function has no critical points, and for posi-
tive values it has two. Hence it is exactly for positive values
of l that a discontinuity inf appears. The graph ofFTstd=T
+mft−dsTdg3− lft−dsTdg is the graph ofmt3− lt displaced by
T in the vertical direction and bydsTd in the horizontal di-
rection. The choice ofdsTd is done in such a way that this
displacement is almost null for positiveT (approximately
corresponding to the right side of the discontinuity) and de-
creases to a negative asymptotic value for negativeT, forcing
f to resemble the experimental data, more or less as depicted

in Fig. 4. The parameterf, which plays the role of the air
flow rate, shifts the graph off in the vertical direction.

Although the essential features of bubbling dynamics are
dominated by the unimensional model, a more accurated re-
production of the data shown in Fig. 3 requires an extra
dimension in the model. This can be done for supposing that
the time interval between two bubbles depends on the two
previous time intervals, instead of just the last one, such as

Tn+1 = f l,fsTnd + bTn−1,

which adds a term that depends linearly on the penultimate
time interval. Although Fig. 6 shows two plotsTn+1 vs Tn of
this dynamics that could be compared with the diagrams of
Fig. 3, this additional term gives no important qualitative
contribution for relatively smallb, justifying the use of uni-
dimensional maps.

IV. PERIOD-ADDING CASCADES

The main ingredient of period-adding cascades in one-
dimensional families of maps isdiscontinuity. The subject is
not new[14–16], but here the aim is at giving a qualitative
description of the phenomenon directly in model(1). As a
consequence, this led us to predict the occurrence ofbista-
bility in the experiment, as explained in Sec. V.

In this analysisf is the control parameter and the others
must remain fixed. The parameterl is suitably chosen in
order thatf = f l,f show a discontinuity; see Fig. 7. The under-
standing of the dynamics comes from the study of thefirst
return mapof iterates off departing from the region to the
right of the discontinuity, as illustrated in Fig. 7 with a typi-
cal trajectory.

FIG. 3. Two examples of chaotic dynamics in the diagramTn+1

vs Tn. (a) Hose length of 130.0 cm. The plot suggests a continuous
function with an inflection point in the decreasing branch.(b) Hose
length of 140.0 cm. Here the plot suggests a discontinuity in the
decreasing branch, indicated by the arrow.

FIG. 4. Depiction of the evolution off with increasing hose
length. The inflection point gives rise to a discontinuity.

FIG. 5. A family of functionsFT that produces a discontinuity in
the greatest root.

FIG. 6. Two examples of chaotic dynamics in the diagramTn+1

vs Tn for the adapted modelTn+1= fsTnd+bTn−1. (a) l =−0.1, f
=−0.12, andb=−0.15.(b) l =0.0, f=−0.172, andb=−0.1.
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A key element determining the number of iterates for re-
turning is the proximity between the diagonal and the left
branch off. This proximity is controlled by the parameterf,
which moves the graph in the vertical direction. Asf ap-
proaches the valuef* for which a saddle-node bifurcation
appears the number of iterates for returning increases to in-
finity.

The first return map to an intervalI, under f, is the map
which associates to eachT in I the point fksTd, where k
=ksTd is the first positive integer such thatfksTd belongs toI,
which will be called thereturn iterate of T. Note that in
general it is not true that the return map is defined for all
points in I, since there may be points whose future orbits
never return. But this is not a serious problem in our setting,
since as long as the left branch off remains above the diag-
onal there will be always a return iterate, except for one orbit
that lands exactly on the discontinuity(where f is not de-
fined).

The choice of the intervalI in model (1) is done in the
natural way. Theleft boundary point of I is defined as the
discontinuity point, which can be explicitly calculated and is
equal to 2msl /3md3/2. Its location is independent of the pa-
rameterf. The right boundary point of I is defined as the
critical value, which is the maximum attained byf in the
region into consideration. Callingxc the critical point, which
is independent off, the critical value is given byf l,0sxcd
−f. The pointxc may be numerically evaluated by finding
the intersection between the solution ofs]G/]Td=0, where
Gst ,Td=T+mft−dsTdg3− lft−dsTdg, with the graph of f l,0.
We found f l,0sxcd=1.461246… in this way.

Once chosen the intervalI = Isfd, one may regard the evo-
lution of its first return map with the parameterf. For ex-
ample, Fig. 8 shows a sequence of snapshots of the first
return map for increasing parameter values. Atf=0.00 the
return map is a single branch crossing the diagonal with
negative slope and derivative smaller than one in absolute
value. This implies that there is an attracting fixed point(for
the return map) in I, and it turns out that this point attracts
every orbit starting inI. Moreover, the conclusion may be
extended tof, as the return map is simply the 4th iterate off:
the attracting fixed point off4 is one point of an attracting
4-cycle of f.

For f=0.02 andf=0.04, in the same figure, the return
map has also a 5-branch, but the asymptotic behavior of

orbits is the same as the one described above forf=0.00.
The significant change occurs when the 5-branch touches the
diagonal, creating an extra pair of fixed points, one attracting
and the other repelling. Now the two attracting fixed points
are alternatives for the asymptotic limit of the orbits and,
except for the repelling fixed point, every orbit goes to one
or to the other. For the original mapf, this implies the exis-
tence of two attracting cycles, of periods 4 and 5.

For f=0.07 it only remains the attracting fixed point of
the 5-branch, and this is still true for parameters a bit beyond
f=0.15. For higher values of the parameter the return map
experiences the same transformations, the 5-branch sharing
space with the 6-branch and then disappearing, letting the
6-branch alone, and so on. At the same time, the bifurcation
diagram shows a single attracting cycle of period 5, then
attracting 5 and 6 cycles coexisting, then a single attracting
cycle of period 6, and so on. This fully explains the period-
adding cascades shown in the diagrams.

The reasoning above shows that in the transition regions
of the parameter where period increases by one unit two
attractors coexist, a phenomenon calledbistability. We ad-
dress this matter in the next section, mainly concerning its
consequences to the experimental data.

V. BISTABILITY

The most striking feature of this experiment is the phe-
nomenon of bistability, which becomes clear in view of the
theoretical explanation of what is a period-adding cascade;
see Sec. IV. However, it is not so easy to detect bistability
merely by the experiment and the reason resides in the way a
bifurcation diagram is obtained.

When drawing a bifurcation diagram by a computer ex-
periment one often proceeds in the following way. The pa-
rameter(which is f, in our case) is allowed to vary within a
certain range. For each parameter, a starting condition is cho-
sen, iterations are done, the first of them are thrown away

FIG. 7. Graph of model(1) for l =1.2 andf=0.03. The dotted
path indicates the iterates of a starting condition until the first return
to the right of the discontinuity.

FIG. 8. Evolution of the return function withf for l =1.2. Num-
bers 4 and 5 indicate the iterate off l,f. Note that in this sequence
the 4-branch has an attracting fixed point. The 5-branch evolves in
the following way: it starts with no fixed point, then it creates two
fixed points, one attracting and the other repelling, and finally the
repelling fixed point disappears, letting this branch in the same
situation as the 4-branch was at the beginning.
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and a certain number of them are plotted with abscissa equal
to the parameter and ordinate equal to their values. But if for
each parameter only one starting condition is chosen then as
a result only one attractor for that parameter will be seen.
Although good for systems with just one attractor(the qua-
dratic family, for example), this method fails in general.

There are two classical ways of choosing a starting con-
dition for each parameter. One is simply by fixing a value
that will be used for all parameters. The other is to assume
the starting condition to be the last iteration done for the
previous parameter. The former method is somewhat arbi-
trary and has no connection with the dynamics. In the latter
case, if an attractor persists from one parameter to the other
then the starting condition will be already very near the at-
tractor and there will be almost no chance of converging to
the other attractor. Thus, if the attractor appearing in the
bifurcation diagram ceases to appear from one parameter to
the next then it is possible to conclude that it has no continu-
ation at all.

The schematic drawing of Fig. 9(a) shows what happens
in a transition of a period-adding cascade when the param-
eter is varied from the left to the right and the starting con-
dition is taken as the last iterate of the previous parameter.
Full lines show what we would see in the plotted diagram,
although dashed lines indicate that another attractor does ex-
ist. However, our vision would be different if the parameter
was allowed to decrease, as shown in Fig. 9(b), things work-
ing like a hysteresis.

The bifurcation diagrams drawn by the experiment work
more or less in the same way. With the aid of the ramp, the
air flow rate is slowly varied and the time intervals between
bubbles are recorded. The only difference is that the param-
eter is continuously changed and, at least theoretically, a
bubble is formed with a different parameter from that of the
previous one. However, if the ramp is sufficiently slow this
will be of no practical importance. In fact, this is the best
way of producing bifurcation diagrams.

Figures 10(a) and 10(b) show two experimental bifurca-
tion diagrams exhibiting a period-adding cascade, one for an
increasing and the other for a decreasing ramp, the remaining
parameters kept fixed. The shift in the parameter values for
which period changes occur is not due to experimental errors
or uncontrollable variables but is fully confirmed by the the-
oretical remarks above. In Figs. 10(A) and 10(B) the same
experiment is done with model(1) and the result is very
similar.

Bistability can also be directly accessed by the following
experiment. Fix an air flow rate corresponding to a transition
window where two periodic attractors coexist. The system
will stabilize in one of the periodic regimes. Now with a
sound burst perturb and relax the system in order that a tran-
sient regime appears. If the perturbation is sufficiently strong
it can move the transient orbit to the basin of the other at-
tractor. Figure 11 shows the time series for a fixed value of
the air flow rate in a transition window between periods 2

FIG. 9. Drawing of what bifurcation diagrams may show in a
computer experiment where the initial condition for each parameter
is chosen as the last iterate of the previous parameter. Full lines
indicate what is plotted in the diagram and dashed lines the attractor
that coexists but does not appear.(a) Increasing values of the pa-
rameter;(b) decreasing values of the parameter. If the diagrams are
compared, the transition from one regime to another happens in
different places.

FIG. 10. (a),(b) Experimental
bifurcation diagrams with increas-
ing and decreasing ramps, for the
longest hose length.(A),(B) Com-
puter generated bifurcation dia-
grams from model(1) with in-
creasing and decreasing
parameters, always taking as ini-
tial condition the last iterate of the
previous parameter.
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and 3, with a sequence of sound bursts revealing two coex-
isting stable regimes. Finally, Fig. 12 shows the bubbling
profiles for these two stable period bubbling regimes.

VI. CONCLUSIONS

We obtained experimental data on time intervals of a
bubble train generated from a nozzle at different air flow
rates. The bifurcation diagrams showed bubble bifurcations
(a period-doubling followed by a period-halving bifurcation)
and period-adding cascades, accordingly to the length of the
hose connecting the flow controller to the chamber under the
nozzle. These diagrams were successfully reproduced by a
two-parameter family of maps constructed with a greatest
root model, one parametersfd qualitatively playing the role
of the air flow rate and the othersld of the hose length. These
maps have a point of discontinuity forl .0 which is associ-
ated to the period-adding cascades. Forl ,0 there is only an
inflection point with derivative going to infinity asl goes to
zero. This inflection point explains the bubble bifurcations
(period-doubling followed by period-halving) for a short
hose.

With this model we better understood the apparent incon-
sistencies between diagrams obtained with increasing and
decreasing ramps. They are explained by the phenomenon of
bistability that occurs in the transition between periods in a
period-adding cascade and the way a bifurcation diagram is
drawn.

One notes that the greatest root model would become a
smallest root model ifFTstd corresponded to a time depen-
dent force balance during the formation of the bubble, with
the function forceFT depending on the timeT of the previ-
ous bubble. But the smallest root models did not reproduce
the experimental diagrams as did the greatest root models.

This global understanding of the outcomes of this experi-
ment allows us to concentrate efforts in the very mechanism
of bubbling formation at fixed air flow rate and its connec-
tion with the parameters involved in the experimental appa-
ratus, as for example the hose length.
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