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Bistability in bubble formation
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We obtain experimental data on time intervals of a bubble train generated from a nozzle with the air flow
rate as the control parameter. Varying the length of the hose that connects the proportionating solenoid valve to
the nozzle, we generate bifurcation diagrams showing period-adding cascades, among other dynamical phe-
nomena. Then we construct a two-parameter family of one-dimensional maps whose bifurcation diagrams
qualitatively match the experimental ones. The model indicates the existence of parameters where two attrac-
tors coexist, a phenomenon called bistability, and the same behavior is fully confirmed in the experiment.
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[. INTRODUCTION parameter, which in the experimental case is the air flow rate.
Some interesting features such period-adding cascades

: L . rhppear in these diagrarfs], a phenomenon already reported
that can be observed in everyday situations, from aquariumy itferent contexts, such as firing neurof@10, electric
to champagne glassé¢s]. The shape of bubbles and the in- circuits [11], and pulsing lasergL2).

fceractio_n betwgen them are the center of interest for many Another important aspect lsstability, which is the coex-

mterfgual stud|es. and tgchnologmal processes from Pe95tence of two stable periodic regimes for the same control
chemical to food mdus}ne&] and space craftg3]. Never- parameter. Bistability arises naturally in theoretical models
theless, bubb!e formation has only really begun to be prOpéhowing period-adding cascades and is fully confirmed in
erly explored in the last few decades due to the developmeny, . oy heriments. This phenomenon implies a shift in the bi-

of experimental and computational techniques, which gav rcation parameters, according to how the experiment is

access to ﬁompletgly new ?hen?menaa Besid_es rt]hesi de\%gnducted, that seems at first sight to be an experimental
opments, the Introduction of nonlinear dynamics has thrown, .. 113} pyt in fact is intrinsic to the dynamics and can be

some light on the understanding of transitions between dif'explained by theory.

ferent bubbling regimes, enabling the recognition of periodic ™ s aner is organized as follows. In Sec. Il we describe
and chaotic behavior. Considering a bubble as an object r he experimental apparatus. In Sec. Ill we present a compari-

sulting fr%m éhitl)rlltefrplay penA:jeen adpneurrrllatlc and al liquidy 5, petween the experimental bifurcation diagrams and those
system, the bubble formation depends on the many elemenig,ineq numerically from the model, explaining then both

such as geometrical and physical-chemical parameters. I, physical and phenomenological motivations of its con-

this direction some attempts have been made to intrOduc§truction. In Sec. IV we study the essential mechanisms of
models which could mimic some of the properties of bubble

; . ) period-adding bifurcations and in Sec. V we obtain confir-
formation and proy|de_a path to th_elr under.stanqmgﬂ. mation, from the experimental point of view, of the predicted
Our emphasis in this paper resides on time scale quantisnenomenon of bistability.
ties of a bubble train generated in a nozzle at different ai
flow rates. More precisely, we look at the time series of time
intervals T,, between successive bubbles and investigate the [l. EXPERIMENTAL APPARATUS
correlation between two successive time intervals. Experi-
mental result$5—8] have shown that the sequerddg} is not
necessarily constant. Stable periodic regimes of perio
greater than one or even chaotic regimes may appear. In fa
g;s tﬂimig:rsaigstegfth;tgzlj_gﬁgﬁ;gi; ?npggoxt'rr]g ?t.?g glVeﬁ'quid is main_tair_led ata level of 15 cm, as shown in Fig. 1.
=1(T,). In this work we propose a more accur’ate modell thatThe.nOZZle W|th_ inner (_:Ilameter of 0.78 mm e_md_ length of 2.5
- . . . . m is placed with its tip 6.5 cm below the liquid surface to
generates Fh's_m"_ip- Bo_th in the experiment and n the_ mod void wall effects on the forming bubble. The nozzle is at-
the. dyf‘am'cs IS |.nvest|gated throggh a blfurcgtlon diagra ached to a chamber with a capacity of 30 ml. Air from a
which is the plotting of the attracting sets against a Controcompressor is injected to a capacitive reservoir and a propor-
tionating solenoid valvgAalborg PSV-5 controlled by a
PID controller(BTC-220 sets the air flow to the chamber
*Electronic address: colli@ime.usp.br under the nozzle. The flow rate is measured by a flow-meter
TURL: http://www.fge.if.usp.bfsartorel/lab.html (Aalborg GFM473. The pressure drop across the solenoid

Bubble formation in a nozzle is a common phenomeno

The bubble column consists of a cylindrical tube with an
inner diameter of 11 cm and 70 cm in height. The bubbles
{re issued by injecting air through a metallic nozzle sub-
(fﬂerged in a viscous flui?0% water/80% glycerpland the
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~ The time interval between bubblégertical axig was re-
\Y corded while slowly increasing the air injection rateori-
zontal axig into liquid. For the shortest ho$&0.0 cm)—Fig.
e 2(a)—the bubbling dynamics is a period 1 regime for this

range of flow rate. In Fig. @) the effect of hose lengthening
(50.0 cm is shown by a closed looplike sequence called
bifurcation bubblearound 115 ml/min. The stable period 1
regime gives rise to a stable period 2 regirfee period-
doubling bifurcation and then reverses to a period 1 regime
again (a reverse period-doubling bifurcation or period-
halving bifurcation. Figure 2c) shows the bifurcation se-
quence for the hose length of 135.0 cm presenting a more
complex scenario, including period 3 and chaos. Finally, in
Fig. 2(d), using the longest hose, we see the period-adding
cascade, where successive stable periodic regimes of increas-
ing period appear as the air flow rate increases. The cascade
is sudden interrupted by the appearance of a period 1 stable
regime.

flowmeter(Fl), the controlleC) and the solenoid valve, represent- by the following model:

ing the control loop of the air flow rate, and the habg between
the valve and the chamber under the nozzle. f o(T) = = ¢+ {greatest root of — T + m(t - dmP

valve is around 50 kPa for the working range of air flow rate. ~I[t=dM, @)

In order to study the influence of the pneumatic system iRyhere d(T)=-A[1-tan{T+B)] and m=0.4, A=2.4, andB
the bubble formation dynamics, a hose is connected from the | 4 4re fixed parameters. In this modElis the time inter-
solenoid valve to the chamber under the nozzle, keeping,| petween bubbles, the control parameteplays the role
fixed the influence of the other elements of the pneumatic ine air flow rate in the diagrams and the paramefsays
system. The hose inner diameter is 4.1 mm and we used foye role of the hose length. Figure&3—2(D) show the nu-
different hose lengths: 10.0 cm, 50.0 cm, 135.0 cm, angnerical experiments with four different valueslobay 1.0,
307.0 cm. The hose lengths change intrinsic properties of theg 55 0.0, and +1.2, respectively. We have chosen the val-
pneumatic system, such as the inertance, which represenigs of generating the best possible qualitative emulations of

the phase difference between pressure and mass flow. Thge real bifurcation sequences. The inspiration to our model
hose volumes are 1.3, 6.6, 17.8, and 40.5 ml, which gives afgmes from three sources.

idea of the relative volumes of the bottom chamber and the (1) Glimpses of the shape dfcoming from the diagram

air line. T.+1 VS T, for parameters with chaotic dynamics. In this case

Using a ramp function of the controller, the air flow rate (nere are many different pait3,,, Tn.1) =[T,, f(T,)] giving a
ranged from 65 to 125 ml/min. We also perturbed the bubbl%ugh idea of at least a region of the graph.

formation dynamics applying sound bursts with a loud (2) Glimpses of the shape df by the properties of its

speaker placed near the top of the bubble column. _dynamics: the bubble bifurcation for the small hose and the
The detection system is based on a laser-photodiode wit eriod-adding cascade for long hoses.

a horizontal He-Ne laser beam focused in photodiode placed (3) Examination of “greatest root models” that may gen-
2 mm above the nozzle. The time interval between success ate discontinuities.

sive bubbles is measured by the time circuitry inserted in @ |,,o examples of1) are shown in Fig. 3, for hose lengths

PC slot with a time resolution equal tops. The input Sig- o431 to 130.0 cm and 140.0 cm and air flow rate around

nals are voltage pulses induced in a resistor and defined byys mi/min. In Fig. 3a) the plot suggests a continuous func-
the beginning(ending of scattering of a laser beam. The i, \yith an inflection point in the decreasing branch and in

pulse width is the time interval, (n is the bubble number a3 4 discontinuity point near the same region. For
and the time delay between two pulses defines the crossing,, haotic dynamics our assumption is that the main fea-

time (dt,) of a bubble through the laser beam, so that they,res of the graph are preserved and its shape is continuously
total time interval isT,=t,+dt,. We estimate the total experi- yaformed as the parameters change.

mental noise around 10é in the period 1 behavior; s¢€] Another less canonical method is to obtain transient iter-
for more details. ates outside equilibrium by perturbing and relaxing the sys-
tem (with a sound burst, for exampleThe problem with this
method is that the perturbation changes the system itself, that
is, exactly the functiorf we want to determine. In fact, one
The experimental results are summarized in the four bihas to observe the transient regime immediately after remov-
furcation diagrams shown in Figs(e€3-2(d), corresponding ing the sound, but it is never sure that the system has re-
to the four hoses in increasing order of length. turned to its unperturbed condition before these iterates. It is

lll. BIFURCATION DIAGRAMS

066215-2



BISTABILITY IN BUBBLE FORMATION

PHYSICAL REVIEW E 70, 066215(2004

(@

Gy

(®)

®)

©

©

120 4
100_\:\ @
god \“;
= .
E 60 L
[ 1 : . N,
20
0 T ¥ T ¥ T T ® T K T -3 T T T T T
70 80 90 100 110 120 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0
air flow (ml/min) [0}

FIG. 2. (ay«(d) Bifurcation diagrams produced by the experiment with hose lengths 10.0 cm, 50.0 cm, 135.0 cm, and 307.0 cm,
respectively(A)—«D) Bifurcation diagrams produced by a computer experiment with mddeivith parametet equal to —1.0, —0.55, 0.0,
and +1.2, respectively.

pratically impossible to push the bubbles to a transient rethe bifurcation diagram. For example, for long hoses the

gime without affecting the system we want to observe. period-adding cascade suggests a mechanism of increasing
However combining the positive aspects coming fr@n  period and a discontinuity of (as we will see later in Sec.

and(3) we were able to fulfill these lacks of information.  1V). For short hoses, the bubble bifurcation suggests a de-
Concerning(2), if the dynamics is periodic little can be creasing branch of with an inflection point. For if(a) the

said about the shape &f but the variation of a parameter derivative is greater than one in absolute value at the inflec-

induces a movement in the graph that has consequences tian point, (b) the derivative is smaller than one a bit farther
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in Fig. 4. The paramete$, which plays the role of the air

) o _ flow rate, shifts the graph df in the vertical direction.

FIG. 3. Two examples of chaotic dynamics in the diagrBm Although the essential features of bubbling dynamics are
vs Tp. (a) Hose length of 130.0 cm. The plot suggests a continuougyominated by the unimensional model, a more accurated re-
function with an inflection point in the decreasing brandh.Hose roduction of the data shown in Fig. 3 requires an extra
length O_f 140.0 cm. H?re the plot suggests a discontinuity in th imension in the model. This can be done for supposing that
decreasing branch, indicated by the arrow. the time interval between two bubbles depends on the two
previous time intervals, instead of just the last one, such as

Tn+1 = fl,¢(Tn) + an—li

from the inflection point andc) the graph moves with re-
spect to the diagonal with the variation of the control param-
eter, then the fixed point given by the intersection between . . :
the graph and the diagonal may lose and recover its stability h|ch adds a term that erends linearly on the penultimate
by period-doubling and period-halving bifurcations. ime interval. Although Fig. 6 shows two plot,, vs T, of

All these considerations show that the hose length affect IS dynar_nlcs th_a_t could be cpmpared_ with the dlagr_am_s of
the shape of more or less as depicted in Fig. 4. As long as 9. 3 th's add|t|on_a| term gives no Important quahtapve
the hose length increases the smooth inflection becom ntnbgnon for relatively smalb, justifying the use of uni-
stronger, giving rise to a discontinuity. Imensional maps.

A discontinuity like this can be generated by a greatest
root model. For eacfT we associate a functioR(t) and
determinef(T) as its greatest root. A discontinuity in the
function f may appear ifF; is not monotone. IF; changes
more or less as in Fig. 5, for example, for increasighen
there is a jump in the value dfT) exactly for the parameter
T such that the critical value touches the abscissa.

The functionF+(t) was chosen to be always a cubic in the
variablet. The starting point was the functiont®-It, where
| plays the role of the hose length. Note that for negativ
values ofl this function has no critical points, and for posi-
tive values it has two. Hence it is exactly for positive values
of | that a discontinuity inf appears. The graph &(t)=T
+mt—d(T)2-1[t-d(T)] is the graph oit3-It displaced by
T in the vertical direction and bg(T) in the horizontal di-
rection. The choice ofl(T) is done in such a way that this

IV. PERIOD-ADDING CASCADES

The main ingredient of period-adding cascades in one-
dimensional families of maps @iscontinuity The subject is
not new[14-14, but here the aim is at giving a qualitative
description of the phenomenon directly in mod#). As a
consequence, this led us to predict the occurrenceisté-
bility in the experiment, as explained in Sec. V.

In this analysis¢ is the control parameter and the others
emust remain fixed. The parametkris suitably chosen in
order thatf=f, , show a discontinuity; see Fig. 7. The under-
standing of the dynamics comes from the study of fil&t
return mapof iterates off departing from the region to the
right of the discontinuity, as illustrated in Fig. 7 with a typi-
cal trajectory.

: . o . 0.8
displacement is almost null for positiveé (approximately 4 N
corresponding to the right side of the discontinpiiyd de- 0.4 /\
creases to a negative asymptotic value for negdatjJfercing 8 /\ /
f to resemble the experimental data, more or less as depictec 0.0 '
=04 . \ \
-0.8
] AN
-12 T I T I T I T I T T I T T I T | T
-1.2 -0.8 -04 0.0 04 08

T

n

hose length
FIG. 6. Two examples of chaotic dynamics in the diagrBjmy

vs T, for the adapted modeT,,;=f(T,) +bT,_1. (@ 1=-0.1, ¢
=-0.12, ancb=-0.15.(b) 1=0.0, $=-0.172, anch=-0.1.

FIG. 4. Depiction of the evolution of with increasing hose
length. The inflection point gives rise to a discontinuity.
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FIG. 7. Graph of mode{l) for 1=1.2 and¢=0.03. The dotted

path indicates the iterates of a starting condition until the first return

to the right of the discontinuity.
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FIG. 8. Evolution of the return function witth for | =1.2. Num-

A key element determining the number of iterates for re_berS 4 and 5 indicate the iterate bf¢ Note that in this sequence
turning is the proximity between the diagonal and the leftthe 4-branch has an attracting fixed point. The 5-branch evolves in

branch off. This proximity is controlled by the parametér
which moves the graph in the vertical direction. &sap-
proaches the value” for which a saddle-node bifurcation

the following way: it starts with no fixed point, then it creates two
fixed points, one attracting and the other repelling, and finally the
repelling fixed point disappears, letting this branch in the same

appears the number of iterates for returning increases to irntuation as the 4-branch was at the beginning.

finity.

The first return map to an interval underf, is the map
which associates to each in | the point fT), wherek
=Kk(T) is the first positive integer such th&{T) belongs td,
which will be called thereturn iterate of T. Note that in

orbits is the same as the one described abovesfo.00.

The significant change occurs when the 5-branch touches the
diagonal, creating an extra pair of fixed points, one attracting
and the other repelling. Now the two attracting fixed points

general it is not true that the return map is defined for all@re alternatives for the asymptotic limit of the orbits and,
points in |, since there may be points whose future orbits€Xcept for the repelling fixed point, every orbit goes to one
never return. But this is not a serious problem in our setting® to the other. For the original mafp this implies the exis-
since as long as the left branch bfemains above the diag- tence of two attracting cycles, of periods 4 and 5.

onal there will be always a return iterate, except for one orbit

that lands exactly on the discontinuitwhere f is not de-
fined).

The choice of the interval in model (1) is done in the
natural way. Thdeft boundary point of | is defined as the
discontinuity pointwhich can be explicitly calculated and is
equal to 2n(1/3m)%2, Its location is independent of the pa-
rameter¢. The right boundary point of | is defined as the
critical value which is the maximum attained bfyin the
region into consideration. Calling, the critical point, which
is independent ofp, the critical value is given byf| o(X.)
—¢. The pointx, may be numerically evaluated by finding
the intersection between the solution (@fG/JT)=0, where
G(t, )=T+mt-d(T)P-I[t-d(T)], with the graph off, .
We foundf, o(x;)=1.461246.. in this way.

Once chosen the intervek1(¢), one may regard the evo-
lution of its first return map with the parameteér For ex-

For ¢=0.07 it only remains the attracting fixed point of
the 5-branch, and this is still true for parameters a bit beyond
$»=0.15. For higher values of the parameter the return map
experiences the same transformations, the 5-branch sharing
space with the 6-branch and then disappearing, letting the
6-branch alone, and so on. At the same time, the bifurcation
diagram shows a single attracting cycle of period 5, then
attracting 5 and 6 cycles coexisting, then a single attracting
cycle of period 6, and so on. This fully explains the period-
adding cascades shown in the diagrams.

The reasoning above shows that in the transition regions
of the parameter where period increases by one unit two
attractors coexist, a phenomenon callg@dtability. We ad-
dress this matter in the next section, mainly concerning its
consequences to the experimental data.

V. BISTABILITY

ample, Fig. 8 shows a sequence of snapshots of the first

return map for increasing parameter values.¢At0.00 the

The most striking feature of this experiment is the phe-

return map is a single branch crossing the diagonal witmmomenon of bistability, which becomes clear in view of the
negative slope and derivative smaller than one in absoluttheoretical explanation of what is a period-adding cascade;

value. This implies that there is an attracting fixed pofat
the return mapin I, and it turns out that this point attracts
every orbit starting inl. Moreover, the conclusion may be
extended td, as the return map is simply the 4th iteratef of
the attracting fixed point of* is one point of an attracting
4-cycle off.

For $=0.02 and$=0.04, in the same figure, the return

see Sec. IV. However, it is not so easy to detect bistability
merely by the experiment and the reason resides in the way a
bifurcation diagram is obtained.

When drawing a bifurcation diagram by a computer ex-
periment one often proceeds in the following way. The pa-
rameter(which is ¢, in our casgis allowed to vary within a
certain range. For each parameter, a starting condition is cho-

map has also a 5-branch, but the asymptotic behavior dfen, iterations are done, the first of them are thrown away
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x x The schematic drawing of Fig(&® shows what happens
e —————— — in a transition of a period-adding cascade when the param-
(a) —_— (b) —_ eter is varied from the left to the right and the starting con-

dition is taken as the last iterate of the previous parameter.
—_— Full lines show what we would see in the plotted diagram,
although dashed lines indicate that another attractor does ex-
increasing ¢ decreasing ¢ ist. However, our vision would be differe_nt if t_he parameter
was allowed to decrease, as shown in Fidp) things work-
FIG. 9. Drawing of what bifurcation diagrams may show in a INd like & hysteresis. _
computer experiment where the initial condition for each parameter 1he bifurcation diagrams drawn by the experiment work
is chosen as the last iterate of the previous parameter. Full linedl0re or less in the same way. With the aid of the ramp, the
indicate what is plotted in the diagram and dashed lines the attract¥il flow rate is slowly varied and the time intervals between
that coexists but does not appe@) Increasing values of the pa- bubbles are recorded. The 0n|y difference is that the param-
rameter;(b) decreasing values of the parameter. If the diagrams ar€ter is continuously changed and, at least theoretically, a
compared, the transition from one regime to another happens ibubble is formed with a different parameter from that of the
different places. previous one. However, if the ramp is sufficiently slow this
will be of no practical importance. In fact, this is the best
and a certain number of them are plotted with abscissa equatay of producing bifurcation diagrams.
to the parameter and ordinate equal to their values. But if for Figures 10a) and 1@b) show two experimental bifurca-
each parameter only one starting condition is chosen then a®n diagrams exhibiting a period-adding cascade, one for an
a result only one attractor for that parameter will be seenincreasing and the other for a decreasing ramp, the remaining
Although good for systems with just one attracttite qua- parameters kept fixed. The shift in the parameter values for
dratic family, for examplg this method fails in general. which period changes occur is not due to experimental errors
There are two classical ways of choosing a starting coner uncontrollable variables but is fully confirmed by the the-
dition for each parameter. One is simply by fixing a valueoretical remarks above. In Figs. (20 and 1@B) the same
that will be used for all parameters. The other is to assumexperiment is done with modé€ll) and the result is very
the starting condition to be the last iteration done for thesimilar.
previous parameter. The former method is somewhat arbi- Bistability can also be directly accessed by the following
trary and has no connection with the dynamics. In the latteexperiment. Fix an air flow rate corresponding to a transition
case, if an attractor persists from one parameter to the othevindow where two periodic attractors coexist. The system
then the starting condition will be already very near the at-will stabilize in one of the periodic regimes. Now with a
tractor and there will be almost no chance of converging tasound burst perturb and relax the system in order that a tran-
the other attractor. Thus, if the attractor appearing in thesient regime appears. If the perturbation is sufficiently strong
bifurcation diagram ceases to appear from one parameter itbcan move the transient orbit to the basin of the other at-
the next then it is possible to conclude that it has no continutractor. Figure 11 shows the time series for a fixed value of
ation at all. the air flow rate in a transition window between periods 2

FIG. 10. (a),(b) Experimental
bifurcation diagrams with increas-
ing and decreasing ramps, for the
longest hose lengthA),(B) Com-
puter generated bifurcation dia-
grams from model(1) with in-
creasing and decreasing
parameters, always taking as ini-
tial condition the last iterate of the
previous parameter.

Air flow (m)/min) 0
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FIG. 11. Time series indicating the coexistence of two different
periodic bubbling regimes with a period two and a period three. It is .
possible to switch between the attractors using sound bursts. The air T T
flow rate was kept constant at 69.7 ml/min. 1 5 | 1 |

‘e N |

and 3, with a sequence of sound bursts revealing two coex- o | | ﬁ

isting stable regimes. Finally, Fig. 12 shows the bubbling T,_-o j

profiles for these two stable period bubbling regimes. 2 ‘T.-—-' o ;
VI. CONCLUSIONS — R

We obtained experimental data on time intervals of a FIG. 12. Images of bistability. &) the bubbling is in period-2,
bubble train generated from a nozzle at different air flowin which these two bubble§’; andT,), close to the nozzlérepre-
rates. The bifurcation diagrams showed bubble bifurcationgented by the lowest spowill coalesce creating a large bubble
(a period-doubling followed by a period-halving bifurcatjion Similar toT, » In (b) there is a period-3 bubbling regime, in which
and period-adding cascades, accordingly to the length of th&® two first bubbles coalesce forming a large bublhle as in the
hose connecting the flow controller to the chamber under th?re"'o,US case, but now there is a third noncoalescent buble
nozzle. These diagrams were successfully reproduced by '310Wing the large bubble.

two-parameter family of maps constructed with a greatest ope notes that the greatest root model would become a
root model, one paramete) qualitatively playing the role  smallest root model iF+(t) corresponded to a time depen-
of the air flow rate and the othél) of the hose length. These dent force balance during the formation of the bubble, with
maps have a point of discontinuity for-0 which is associ- the function forceF; depending on the tim& of the previ-
ated to the period-adding cascades. o0 there is only an  ous bubble. But the smallest root models did not reproduce
inflection point with derivative going to infinity asgoes to  the experimental diagrams as did the greatest root models.
zero. This inflection point explains the bubble bifurcations This global understanding of the outcomes of this experi-
(period-doubling followed by period-halvingfor a short ~ment allows us to concentrate efforts in the very mechanism
hose. of bubbling formation at fixed air flow rate and its connec-
With this model we better understood the apparent incontion with the parameters involved in the experimental appa-
sistencies between diagrams obtained with increasing an@tus, as for example the hose length.
decreasing ramps. They are explained by the phenomenon of
bistability that occurs in the transition between periods in a
period-adding cascade and the way a bifurcation diagram is This work was partially supported by the Brazilian agen-
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